Pierre's Blog

IMU 101

/ Project

IMU 101

What is IMU?

source: https://www.ceva-dsp.com/ourblog/what-is-an-imu-sensor/

為什麼需要濾波?

加速度計會產生高頻振蕩的噪音訊號,又陀螺儀是將角速度對時間積分產生角度,故易產生誤差

source: https://stackoverflow.com/questions/1586658/combine-gyroscope-and-accelerometer-data

互補濾波

Complementary filter

定時對加速度採樣的角度取平均值 + 短時間內採用陀螺儀得到的角度

加速度計要濾掉高頻訊號,陀螺儀要濾掉低頻訊號


https://stackoverflow.com/questions/1586658/combine-gyroscope-and-accelerometer-data

$$
\text{angle’} = \alpha(\text{angle} + \text{gyro} \times dt) + (1-\alpha)\times(X_a)
$$

卡爾曼濾波

Kalman filter

基本模型-真實狀態

$$
\displaylines{
x_k = Fx_{k-1}+Bu_k+w_k \\
w_k \sim N(0,\ Q_k)
}
$$

基本模型-觀測

$$
\displaylines{
z_k = Hx_k + v_k \\
v_k \sim N(0, R_k)
}
$$

預測

$$
\displaylines{
\hat{x}_ k^{-} = F\hat{x}_{k-1}+B\dot{\theta}_k \\
}
$$

修正

$$
\displaylines{
K_k = P_k^-H^T(HP^-_kH^T+R)^{-1} \\
\hat{x}_k = \hat{x}^-_k + K_k(z_k-H\hat{x}_k^-) \\
P_k = (I-K_kH)P^-_k
}
$$

實作

裝置&流程

測試結果 Part 1

測試結果 Part 2

Pitch Row

Reference

Welch, G. and Bishop, G. (2006). An Introduction to the Kalman Filter, Department of Computer Science University of North Carolina at Chapel Hill
Lauszus. (2012). A practical approach to Kalman filter and how to implement it, TKJ Electronics